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The dielectric response of a simple model of a polar fluid near neutral interfaces is examined by a
combination of linear response theory and extensive molecular dynamics simulations. Fluctuation
expressions for a local permittivity tensoresr d are derived for planar and spherical geometries,
based on the assumption of a purely local relationship between polarization and electric field. While
the longitudinal component ofe exhibits strong oscillations on the molecular scale near interfaces,
the transverse component becomes ill defined and unphysical, indicating nonlocality in the dielectric
response. Both components go over to the correct bulk permittivity beyond a few molecular
diameters. Upon approaching interfaces from the bulk, the permittivity tends to increase, rather than
decrease as commonly assumed, and this behavior is confirmed for a simple model of water near a
hydrophobic surface. An unexpected finding of the present analysis is the formation of “electrostatic
double layers” signaled by a dramatic overscreening of an externally applied field inside the polar
fluid close to an interface. The local electric field is of opposite sign to the external field and of
significantly larger amplitude within the first layer of polar molecules. ©2005 American Institute
of Physics. fDOI: 10.1063/1.1845431g

I. INTRODUCTION

The dielectric permittivity of a medium is a macroscopic
concept which is defined by the relationship between the
polarizationP and the electric fieldE inside the medium.1

When the dielectric medium is inhomogeneous over dis-
tances much larger than molecular scales, a space-dependent
slocald permittivity esr d may be defined when dealing with
mesoscopic electrostatic problems. The question of how far
towards molecular scales a local permittivity remains a
meaningful concept, and howesr d is related to dipolar fluc-
tuations is a long-standing problem2 which we have recently
addressed in the case of a polar fluid near a sharp interface.3

We showed that a necessary condition for the existence of a
meaningful, statistical definition of a local permittivity is that
the local electric field inside the medium does not vary ap-
preciably on the scale of the molecular correlation length, as
already noted by Nienhuis and Deutch.2

The ability to give a clear-cut statistical definition of a
local permittivity is crucial for any coarse-graining strategy,
whereby large parts of a complex multicomponent system
are treated as continuous dielectric media, while the remain-
ing parts are described in molecular detail. An important ex-
ample is provided by implicit solvent models of biomolecu-
lar assemblies, where water is considered as a continuous
dielectric medium, characterized by a local permittivity in
the immediate vicinity of biomolecules or membranes. A spa-
tially varying permittivity then determines the electrostatic
interactions between charged residues and ions.4 Conversely
one may wish to describe a polar solvent trapped within a
dielectric matrix, as in the case of water confined between
membranes or clay platelets, or within narrow pores. In these
circumstances it may be advantageous to describe the con-
fining matrix as a dielectric continuum, while the confined
polar liquid is modeled with molecular resolution.5

In this paper we consider the case of polar fluids con-
fined by continuous dielectric media characterized by a per-
mittivity e8. We relate the local dielectric permittivityesr d to
the dipolar fluctuations within the inhomogeneous fluid,
along the lines of the classic Kirkwood–FröhlichsKFd linear
response treatment of the bulk permittivity.6,7 More specifi-
cally, we shall consider the cases of a simple polar fluid in an
infinite slab confined by two semi-infinite dielectric media
and of a polar fluid confined to a spherical cavity inside a
uniform, macroscopic dielectric continuum. Numerical re-
sults based on long Molecular DynamicssMDd simulations
will illustrate the limitations of the concept of a local permit-
tivity in the two geometries.

All considerations in this paper will be restricted to
sharp interfaces. Like most previous theoretical and numeri-
cal work in the field, the present coarse-grained treatment
suffers from the inconsistency of ignoring the molecular
graininess of the confining media, while using a fully mo-
lecular description of the polar fluid.

II. POLARIZATION IN LINEAR RESPONSE

Consider a classical fluid at temperatureT=1/skBbd,
made up ofN polar molecules carrying dipole momentsmi,
confined to a cavity of arbitrary shape and volumeV, carved
out of a macroscopic dielectric medium of uniform permit-
tivity e8. The molecules may be polarizable; their interac-
tions are arbitrary at short distances, but tend towards the
dipolar interaction at larger distances. The microscopic po-
larization density is

msr d = o
i=1

N

midsr − r id, s1d

wherer i is the position of theith molecule inside the cavity.
The corresponding total dipole moment is
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M =E
Dcavity

msr ddr = o
i

mi . s2d

Let P0sr d=kmsr dl be the average local polarization of the
fluid in the absence of an externally applied electric fieldsby
definition,E8 is the field far away from the cavity, created by

charges atur u→`d E8. In an isotropic phase,P0sr d=0 for
points in the bulk of the fluid. Close to the confining bound-
aries,P0sr d is nonzero in general, but may vanish for sym-
metry reasons, as in the case of linear polar molecules con-
fined in a slab or a spherical cavityssee Sec. IIId. When a
uniform external field is applied to the system, it induces a
polarization density defined by

DPsr d = Psr d − P0sr d = kmsr dlE8 − kmsr dl =
e fmsr d − kmsr dlgexpf− bsUe8s1,…,Nd − M ·Ecdgd1̄ dN

e expf− bsUe8s1,…,Nd − M ·Ecdgd1̄ dN
, s3d

where we have used the short-hand notationi for the degrees
of freedom of theith molecule. For linear nonpolarizable
molecules,i =sr i ,mid reduces to the position and orientation
of the permanent dipole moment, and integration with phase
space element di =d3r idVmi

is performed over all possible
positions and orientations of the molecule inside the cavity.
Ue8 is the total interaction energy of theN polar molecules of
the fluid within the cavity in the absence ofE8; it depends
obviously on the permittivitye8 of the surrounding dielectric.
The instantaneous total dipole momentM couples to the cav-
ity field Ec, i.e., the electric field inside the cavity in the
absence of polar fluid, when the externalsappliedd field in
the embedding dielectric isE8. The two fields are related by
the usual boundary conditions of macroscopic electrostatics.

Let DEsr d=Esr d−E0sr d be the difference between the
mean local electric field inside the cavity, due to the external
field and all the dipoles, and the mean electric field when no
external field is appliedfnote thatE0sr d=0 if P0sr d=0 ev-
erywhereg. Then, within the linear regimefi.e., for not too
strongDEsr dg, the induced polarization density is related to
DEsr d via

DPsr d =
1

4p
E

Dcavity

xsr ,r 8d · DEsr 8ddr 8, s4d

where x is the dielectric susceptibility tensor. In the slow
modulation limit, i.e., for slowly varyingDEsr d, the integral
factorizes approximately, and Eq.s4d reduces to the local
form

DPsr d =
1

4p
xsr d · DEsr d, s5d

where, formally,xsr ,r 8d=xsr ddsr −r 8d. The local permittiv-
ity tensor is defined by

xsr d = esr d − I . s6d

Linearization of Eq.s3d with respect ofEc leads to the fol-
lowing relation between the components ofDPsr d andEcsr d:

DPasr d = b o
g=x,y,z

fkmasr dMgl − kmasr dlkMglgEg
c , s7d

wherea,g=x, y, or z and the statistical averages are under-
stood to be taken at zero externalsand hence cavityd field,
i.e., with a Bolzmann weight exps−bUe8d. As expected for
the linear response to a uniform external field, Eq.s7d in-
volves the average correlation between a fluctuation in the
local polarization densitymsr d and a fluctuation in the global
dipole momentM of the system, as has been recognized
recently by Stern and Feller.8 Note thatkM l will be zero by
symmetry in all systems we shall consider.

Comparison between Eqs.s5d ands7d does not provide a
fluctuation formula forxsr d or esr d, since they involve the
total and cavity fields, respectively. The relation between
these two fields depends on the geometry of the cavity, and
can be established within macroscopic electrostatics. We
consider successively the case of slab and spherical geom-
etries.

A. Slab geometry

We consider a cavity in the form of an infinite slab
where a fluid ofr=N/V polar molecules per unit volume is
confined in thez direction by two infinite dielectric walls of
permittivity e8. The distance between the dielectric walls is
L. The confined fluid is inhomogeneous in thez direction
sorthogonal to the wallsd only. By symmetry, the permittivity
tensor reduces to the diagonal form

eszd = 1eiszd 0 0

0 eiszd 0

0 0 e'szd
2 , s8d

whereei ande' denote the components parallel and orthogo-
nal to the walls. Equationss5d ands6d then combine into two
independent relations,

Piszd =
eiszd − 1

4p
Eiszd, s9ad
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DP'szd =
e'szd − 1

4p
DE'szd. s9bd

We dropped the symbolD in Eq. s9ad because isotropy in the
sx, yd-plane implies thatP0sr d sthe average polarization in
the absence of external fieldd has no parallel components.
Using the standard boundary conditions on the normal and
tangential components of the electric field, one finds the fol-
lowing relations between the components of the uniform ex-
ternal fieldE8 and the cavity fieldEc,

Ei
c = Ei8, E'

c = e8E'8 , s10d

where Ei
c and Ei8 are two-dimensional vectors in thesx,yd

plane; the orthogonal components are along thez direction.
Maxwell’s equation=3Eszd=0 implies

]Exszd
]z

=
]Eyszd

]z
= 0, s11d

so thatEi=sEx,Eyd is independent ofz, i.e.,Eiszd=Ei8 every-
where in space. In other words, Eq.s9ad leads to

Piszd =
eiszd − 1

4p
Ei8 =

eiszd − 1

4p
Ei

c. s12d

Comparison of Eqs.s7d and s12d, together with isotropy in
the sx,yd plane then leads to the desired fluctuation formula
for eiszd:

eiszd = 1 + 2pbfkmiszd ·M il − kmiszdl · kM ilg. s13d

The orthogonal component may be determined from Max-
well’s equation= ·Dszd=0, whereD=E+4pP is the dis-
placement vector, leading to

d

dz
fE'szd + 4pP'szdg = 0. s14d

Integration of Eq.s14d from −` to z yield

E'szd − E'8 = − 4pP'szd + 4pP'sz= − `d

=− 4pP'szd + se8 − 1dE'8 . s15d

Substracting from Eq.s15d the same equation without exter-
nal field and using Eq.s9bd gives e'szdDE'szd=e8E'8 =E'

c ,
where the second equality follows from Eq.s10d. Equation
s9bd may hence be rewritten as

P'szd =
1

4p

e'szd − 1

e'szd
E'

c . s16d

Comparison of Eq.s16d with the transversesa= ' d version
of Eq. s7d leads to the desired fluctuation formula fore'szd,

e'szd − 1

e'szd
= 4pbfkm'szdM'l − km'szdlkM'lg. s17d

Equationss13d and s17d are the appropriate fluctuation for-
mulas to compute the permittivity tensoreszd of a system
inhomogeneous in one direction. Note that these formulas
depend only implicitly, via the statistical averages weighted
by the Bolzmann factor exps−bUe8d, on the permittivitye8 of
the confining medium. This is to be contrasted with the re-
sults for spherical samples to be discussed below.

The key finding is that a local expression of the permit-
tivity involves correlations of the local and total polarization
of the form kmaszdMgl, and not of the local polarization
alone, as has sometimes been wrongly assumed in the litera-
ture. This was already recognized by Stern and Feller,8 but
their expression for the permittivity tensoreszd differs from
the one derived here, because they did not consider a single
slab, but a system which is periodically replicated in space to
form an infinite spherical array of the original slab.

We stress that formulass13d ands17d were derived for a
uniform external field under the local assumptions5d. If the
local assumption is not valid, definitionss9ad and s9bd be-
come purely formal, and the permittivityeszd may take val-
ues that are unphysical and specific to the case of a uniform
external field permeating a planar interface.

B. Spherical geometry

We now consider a system ofN polar molecules con-
fined to a spherical cavity of radiusR, surrounded by a di-
electric medium of permittivitye8. We first recall the fluc-
tuation formula for thebulk dielectric constant of this
system. The cavity field is nowEc=3e8E8 / s2e8+1d. For a
macroscopic spherical sample of uniform permittivitye, the
local field, far from the boundaries, is uniform and equal to
E=3e8E8 / s2e8+ed. SubstitutingEc and E into Eq. s7d and
into the definitions5d of the polarization, one arrives, upon
identification and use of the isotropy of the system, at

se − 1ds2e8 + 1d
s2e8 + ed

=
4pe

3
fkmsr d ·M l − kmsr dl · kM lg. s18d

In this formular can be any point in the bulk of the sample,
so thatmsr d may be replaced byM /V if boundary effects are
negligible. This leads back to the well known KF formula for
the bulk dielectric constant in terms of fluctuationsskM 2l
−kM l2d /V of the total dipole moment of the system.7 Since
boundary conditions in computer simulations are designed to
minimize finite size effects, the KF formula can be used, as
expected, to compute the dielectric constant in a simulation
performed with a reaction field or periodic boundary condi-
tions sif the Ewald sums are performed using the spherical
convention for the order of summationd.9 For a confined
spherical system which isnot periodically repeated, the di-
electric constant should be computed from Eq.s18d ssee Sec.
III B d.

Attempts have been made to generalize the KF relation,
valid for a macroscopic spherical system, to mesoscopic
samples, wherePsr d, Esr d, and the resultingesr d are nonuni-
form near the confining surface.10,11 Strictly speaking,esr d
is, however, no longer a scalar near the sample boundary, but
a tensor with radial and tangential components.

We consider here the case where the external field is
radial, preserving thus the spherical symmetry of the prob-
lem. Such a radial field can arise from an external chargeq
placed at the center of the spherical cavity filled with polar
molecules, or polar residues of a globular macromolecule
se.g., a proteind; in that case the nonuniform external field is
E8sr d=sq/ r2dr̂ where r̂ =r / r. The dipoles of the confined
fluid or macromolecule couple to this field with energy,
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Uext = − o
i

mi ·E8sr d = −E
Dcavity

msr dE8sr ddr , s19d

wheremsr d=msr d ·r̂ is the radial component of the micro-
scopic polarization densitys1d, andE8srd=q/ r2. Substituting
s19d into the Boltzmann factor in the definitions3d of the
polarization, and linearizingswhich is valid in the limit of
small qd, one arrives at the following relation between the
radial component ofPsr d and the radial component of the
external field:

Psrd = Psr d · r̂ = kmsr dl + bE
Dcavity

dr 8fkmsr dmsr 8dl

− kmsr dlkmsr 8dlgE8sr 8d, s20d

where the statistical averages are once more taken at zero
external field. We consider the case of molecules carrying
linear dipoles, so thatkmsr dl=0 by symmetry. We now as-
sume a local relationship betweenPsr d and the radial local
field Esr d in the general form defined by Eqs.s5d and s6d,
and involving a local dielectric permittivityesrd,

Psrd =
esrd − 1

4p
Esrd. s21d

This relationship, together with= ·Dsr d=4pqdsr d, implies
that the fieldsEsrd andE8srd are related by

Esrd =
E8srd
esrd

. s22d

Combination of Eqs.s20d, s21d, and s22d then leads to the
following relation foresrd:

1

4p

esrd − 1

esrd
E8srd = bE

Dcavity

dr 8kmsr dmsr 8dlE8sr8d s23d

or, substitutingE8srd=q/ r2,

esrd − 1

esrd
= 4pbE

Dcavity

dr 8kmsr dmsr 8dlS r

r8
D2

. s24d

Note that, contrary to Eq.s18d, this relation does not depend
explicitly on the permittivitye8 of the confining medium.
The present space-dependent dielectric constantesrd de-
scribes the screening by the polar fluid of the external field
created by the point chargeq, as is obvious from Eq.s22d. It
reduces to the bulk dielectric constant whenr is sufficiently
large, but still small compared to the radiusR of the spheri-
cal cavity.

III. MOLECULAR DYNAMICS RESULTS

A. Slab geometry

We have carried out a number of long MD simulations
sspanning tens of nanosecondsd to obtain estimates ofeiszd
and e'szd from the fluctuation formulass13d and s17d. In a
slab of width L, 3500 dipolar soft spheressDSSd were
placed. The confining walls atz=0 andz=L are assumed to
be nonpolarizablese8=1d. The simulation cell is a cube with
edges of lengthL, and periodic boundary conditions are im-
posed in thesx,yd directions. Each molecule carries an ex-

tended dipolem made up of two opposite charges ±q placed
at ±d /2 from the center, such thatm=qd; the elongation was
chosen to bed/s=1/3, wheres is the molecular diameter.
The bulk dielectric behavior of fluids with such extended
dipoles has been shown to be very similar to that of fluids
with point dipoles, as long asd/s,1/2.12 The short-range
repulsion between the spherical molecules is chosen to be of
the “soft sphere” form

uSrsrd = 4uSs

r
D12

s25d

with s=0.366 nm andu=1.85 kJ/mole fthe charges ±q
carry a massm=5 amu; a molecule has hence a total mass of
2m and a reduced moment of inertiaI* = I /2ms2=1/9. The
simulations were performed with the simulation package
GROMACS.13 The equations of motion were integrated with a
time step dt=2 fs sreduced time stepdt* =dt/ sms2/ud1/2

=0.0024dg. The walls exert a force on the center of mass of
the molecules that derives from the potential,

Uwallsszd =
4pu

45
Fs9

z9 +
s9

sL − zd9G . s26d

This potential follows from integrating the soft-sphere repul-
sion potentials25d over the regionsz,0 andz.L, for a wall
of densityrwalls

3=1. The long range Coulomb interactions
between the charges ±q and the infinite array of periodic
images are computed by a slab-adapted version of the usual
3D Ewald summation, as explained in the Appendix.

The structure of the fluid inside the slab is best charac-
terized by the density-orientation profilersz,ud, whereu is
the angle between a molecular dipole and thez axis. This
may be expanded in Legendre polynomials according to

rsz,ud = o
,=0

`

r,szdP,scosud, s27d

where r,szd=1/2s2, +1de−1
+1rsz,udP,scosuddscosud. In the

case of uncharged walls, only even coefficients appear in the
seriess27d because of the symmetryrsz,ud=rsz,p−ud. The
,=0 coefficientr0szd=rszd /2 is one half of the density pro-
file rszd=e0

prsz,udsinudu. The ratio

aszd =
r,=2szd

rszd
s28d

provides a measure of the mean alignment of the dipoles.
SinceP2sxd=s3x2−1d /2, aszd is negative if the dipoles are
predominantly aligned parallel to the interfacefaszd=−5/4
for complete alignmentg, while aszd is positive for predomi-
nantly orthogonal alignmentfaszd=5/2 for full alignment
orthogonal to the interfaceg.

We performed the simulations at a constant temperature
T=300 K sreduced temperatureT* =kT/u=1.35d, and for
two values of the dipole moment:m=1.47 and 2.45 D, cor-
responding to a reduced dipolem* =Îm2/s3u=1.2 and 2, re-
spectively. The width of the slab was adjusted toL
=16.62s, so that the reduced density of the fluid far from the
walls is rbulk

* =rbulks
3=0.8. The bulk dielectric constant of

this polar fluid is 98±2 atm* =2,12,14 and about 10 atm*

=1.2.
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The resulting density and orientation profilesrszd and
aszd in zero applied field are plotted in Fig. 1. Layering
along the walls occurs in an interfacial region of five to six
molecular diameters. The first layer of molecules is seen to
align its dipoles parallel to the interface, but orientational
ordering is rapidly lost further away from the dielectric
walls. The ordering of molecular dipoles parallel to the wall
in the first layer may be understood qualitatively in terms of
electrostatic interactions of these dipoles with their images.15

Strictly speaking, there are no images on the molecular scale
since the walls are not polarizable, but image charge interac-
tions arise on the mesoscopic scale because of the dielectric
discontinuity between the polar fluidse.1d and the walls
se8=1d. The behavior of the density-orientation profile far
from a single dielectric wall has been studied by Badiali,
who showed thatrszd is given asymptotically by its bulk
value plus anA/z3 tail arising from the dielectric discontinu-
ity betweene ande8.16

Parallel and perpendicular permittivity profileseiszd and
e'szd were estimated from the simulations in zero external
field using the fluctuation formulass13d ands17d, as well as
from simulations in the presence of an external field, by
evaluation of the ratioPszd /Eszd of the induced local polar-
ization and electric fieldfcf. Eqs.s9dg.

Results for the parallel permittivityeiszd obtained by
both routes are shown in Fig. 2sthe simulation withE8=0
lasted 28 ns, while that withE8=0.1 V/nm along thex axis
was 3.5 ns longd. The agreement between the two indepen-
dent estimates is seen to be perfect. The pronounced oscilla-
tions ofeiszd near the walls closely mirror the oscillations in
the density profile apparent in Fig. 1. In fact the ratio
eiszdrbulk/rszd, also shown in Fig. 2, shows much less struc-
ture. Towards the middle of the slab,eszd is seen to be con-
stant and to take a valuee.10 sfor m* =1.2d ande.96 sfor
m* =2d, in agreement with the bulk value derived from MD
simulations of a periodic nonconfined fluid at the same state
point. Note that on average,eiszd tends to increase above its
bulk value close to the confining walls; in other words, par-
allel dipolar fluctuations tend to be enhanced near a dielectric

wall with e8=1. This is contrary to the prediction of a gen-
eralization of the familiar Onsager cavity model to the case
of a dipolar fluid near a dielectric wall.17

Turning to the perpendicular permittivitye'szd, we con-
sider first the MD results obtained in the absence of external
field. The structure of the fluctuation formulas17d is very
unfavorable for the estimation of large values of the permit-
tivity since the ratio of the left-hand side is then close to 1,
so that statistical uncertainties on the fluctuation expression
on the right-hand side, which we shall henceforth denote by
fszd, will be dramatically amplified on the quantity of interest
e'szd=1/f1− fszdg. This shortcoming is illustrated in Fig. 3
for the casem* =1.2 swe did not succeed in extractinge'szd
from dipolar fluctuations in the casem* =2d. The signalfszd
calculated by dividing the slab widthL into 300 “bins” is
seen to be rather noisy, despite the length of the simulation
s28 nsd. The fluctuations are strongly enhanced near the

FIG. 1. Density and orientational profile of a DSS fluid in a slabsT*

=1.35,rbulk
* =0.8d for two values of the reduced dipole moment.

FIG. 2. Parallel component of the permittivity tensorssame system as in
Fig. 1d, from fluctuation formulas13d and from the response to an external
field E8=0.1 V/nm alongx axis.

FIG. 3. Dipolar fluctuationsfszd sthin lined and smoothed curvefszd sthick
lined fsee textg. Inset: orthogonal component of the permittivity tensorsm*

=1.2, T* =1.35,rbulk
* =0.8d.
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walls, but these values lead to nonphysical, negative values
of e'szd, pointing to the inadequacy of the local assumption
s9d. A smoothed curvefszd is obtained by averaging the sig-
nal fszd /rszd over intervals of width 3s, and multiplying the
result by the local densityrszd. The resulting estimate of
e'szd in the central region of the slab is shown in the inset of
Fig. 3.

The statistical uncertainties are still large, but the aver-
age value is compatible with a bulk permittivitye'=ei

.10. Outside this central “bulk” interval,e'szd becomes
unphysical wheneverfszd exceeds 1.

We have investigated the transverse dielectric response
by applying an external fieldE8=1 V/nm along thez axis of
the moderately polar fluidsm* =1.2, simulation time: 12 nsd.
This large value was chosen such that the localsscreenedd
field near the center of the slab,Eszd=E8 /e'szd, is still suf-
ficiently strong to induce a sizeable polarization. The local
charge densitycszd induced by the applied field is plotted in
Fig. 4. As expected it is antisymmetric with respect to mid-
planesz=L /2d, and integration ofcszd over the left-hand and
right-hand halves of the slab leads to induced surface charge
densitiescS. ±0.05e/nm2. The local electric fieldEszd is
calculated from

Eszd = E8 + 4pE
0

z

csz8ddz8 s29d

and the polarization density may then be deduced from

Pszd =
E8 − Eszd

4p
= −E

0

z

csz8ddz8 s30d

while the permittivity profile follows from

e'szd =
E8

Eszd
. s31d

Results obtained in this way forEszd, Pszd, and e'szd are
plotted in Fig. 5. The polarization profilePszd can also be
determined from the statistical averagekmszdl of the micro-
scopic polarization density alonesdotted line in Fig. 5d. The
local electric fieldEszd exhibits large oscillations close to the
walls. Inside the first layer,Eszd is strongly negative

s.−2 V/nmd, i.e., the external fieldE8 is overscreenedby a
factor of 2! We refer to this remarkable effect as the forma-
tion of an “electrostatic double layer”sEDLd. Beyond the
first layer, the oscillations inEszd are gradually damped, but
are still visible in the central part of the slab, where the
oscillations are around a mean value of about 0.1 V/nm. The
polarization Pszd oscillates out of phase withEszd as ex-
pected, and the two estimates, based on Eq.s30d and on
kmszdlE8, are in excellent agreement. So are the estimates of
e'szd based on Eqs.s17d ands31d, despite the large statistical
uncertainties. As pointed out above, the relation between
P'szd andE'szd is nonlocalfi.e., of the more general form
s4dg near the walls, whereeszd=1+4pPszd /Eszd can take
negative values, and diverges wheneverEszd=0. Hence
e'szd is not a useful quantity near the walls. A more relevant
quantity is the normalized EDL profileEszd /E8. For weak
fields, it is given by linear response theory, viz.,

E'szd
E8

= 1 − 4pbfkm'szdM'l − km'szdlkM'lg

= 1 − fszd. s32d

Figure 6 illustrates the good agreement between the EDL
profiles computed from the fluctuationsfszd sproperly
smoothed as in Fig. 3d and directly from the ratioE'szd /E8.
The small discrepancies close to the walls are probably due
to the fact that the extended dipoles are treated as point di-
poles in the evaluation offszd. In order to investigate the
influence of the dipole extensiond/s on the striking over-
screening effect observed in the EDL profile near the walls,
we have also carried out simulations for an extensiond/s
=0.1 scompared to 0.3 in the previous simulationsd, keeping
the dipole moment fixed atm* =1.2. An oscillatory profile of
Eszd similar to that in Fig. 5 is once more observed, but the
amplitude of the oscillation closest to the two walls increases
by <50% sfrom 22 to about23 V/nmd, thus pointing to an

FIG. 4. Continuous line: polarization charge densitycszd fe/nm3g induced
inside a slab of polar fluidsm* =1.2, rbulk

* =0.8, T* =1.35d by an external
electric fieldE8=1 V/nm along thez direction. Dashed line: ten times the
integrale0

zcsz8ddz8.

FIG. 5. Electric fieldEszd sthick lined and polarization densityPszd com-
puted using Eq.s30d sthin lined and from the statistical averagekmszdl sdot-
ted lined, for the same system as in Fig. 4. Inset:e'szd from Eq. s31d and
from fluctuation formulas17d sdashed lined.
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enhancement of the overscreening effect as the point dipole
limit is approached.

We also carried out one longs30 nsd MD run of 2076
SPC water molecules,18 confined between the same hydro-
phobic wallss26d. Figure 7 shows the resulting profiles for
the Oxygen density, molecular orientation, and parallel per-
mittivity sthe orthogonal permittivity could not be obtained
from the fluctuationsd. The density profiles are not unlike
those observed in the simulations of Lee, McCammon, and
Rossky,19 who used a different water model, different wall-
water interaction, and a narrower slit. The symmetry
rsz,ud=rsz,p−ud no longer holds, and there is indeed a
nonzero average polarizationPzszd=rszdmkcosul close to the
walls, even with no applied external field. The permittivity
profile e'szd shows that the bulk permittivity of SPC water
se.65d,20 is approximately reached after just one molecular
layer inside the fluid. It is a striking result that, despite the
large dielectric discontinuity between the fluid and the sur-

rounding medium of dielectric constant unity, the local dipo-
lar fluctuations in the vicinity of the interface remain almost
bulklike, except in the very first layer. This behavior is in
marked contrast to that observed for linear extended dipoles,
illustrating the dominant influence of hydrogen bonding in
the case of water.

B. Spherical geometry

The bulk dielectric constant of a spherical droplet of a
polar fluid spossibly surrounded by a continuous medium of
permittivity e8d is given in terms of dipolar fluctuations by
Eq. s18d. Previous workers have used another approach,
which is approximate: they get the dielectric constant of a
droplet from the mean square dipolekmB

2srdl of an inner
spherical region of radiusr, assuming that the remaining
surrounding fluidsa shell of thicknessR−rd can be treated as
a dielectric continuum of permittivityẽ ssee Fig. 8d. The
latter approach yields the Berendsen formula,21–23

se − 1d
s2e8 + ẽds2ẽ + 1d − 2sr/Rd3se8 − ẽds1 − ẽd
s2e8 + ẽds2ẽ + ed − 2sr/Rd3se8 − ẽdse − ẽd

=
4pbkmB

2srdl
3Vr

, s33d

whenVr =4pr3/3. Equations33d reduces to the KF formula
if ẽ=e8 or if r =R. Whenẽ=e, it interpolates between the KF
formula for a sphere surrounded by a medium of permittivity
e sfor r !Rd, and the KF formula for a sphere surrounded by
a mediume8 sfor r =Rd.

We compared the predictions of Eq.s18d with those of
Eq. s33d fwith ẽ=eg, for a dipolar soft sphere fluid with pa-
rametersmp=2, T* =1.35, andrbulk

* =0.2. The fluid was con-
fined to a spherical region by external forces deriving from
the potential,

VRsrd = 4us9pS 1

360

1

r
F 9R− r

sR− rd9 −
9R+ r

sR+ rd9G −
4

9R9D ,

s34d

which arise from integrating the soft-phere repulsion poten-
tial s25d over the regionr .R, assuming a confining medium
of densityrwalls

3=1. The results of a 30 ns long MD simu-
lation of a droplet ofN=1000 molecules confined in a sphere
of radiusR=11.4s surrounded by vacuumse8=1d are shown
in Fig. 9. Interactions were computed without the introduc-
tion of any cutoff. The estimate fore based on Eq.s18d

FIG. 6. EDL ratioE'szd /E8 from Eq. s29d scontinuous lined and from the
fluctuation formulas32d sdashed lined fsame system as in Fig. 3g.

FIG. 7. Density, orientation, and permittivity profiles of 2076 SPC water
molecules confined in a slab of width 4.65 nm by hydrophobic walls
srbulk=33.6 nm−3, T=300 Kd.

FIG. 8. Geometry for the Berendsen formula: a droplet of radiusR is sur-
rounded by a continuous medium of dielectric constante8. Dipolar fluctua-
tions in the fluid are measured inside a concentric subsphere of radiusr,
while the remaining fluid in the outer shell is assumed to behave as a
dielectric continuum of permittivityẽ.
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agrees very well with the bulk dielectric constante
=6.3±0.2 obtained from a simulation performed under peri-
odic boundary conditions using Ewald sums. The Berendsen
approximation is seen to underestimate the dielectric con-
stant by about 8%. It yields the most accurate estimate when
r is large enough to encompass the structural angular corre-
lations, but small compared toR so that the outer shell of the
fluid can screen effectively the dipolar fluctuations. This is in
contrast with Eq.s18d, which provides in principle an esti-
mate fore that is independent of the chosen radiusr of the
inner subsphere, as long as it is small enough for boundary
effects to be negligible. The variations of the estimate ob-
served in Fig. 9, especially at smallr, are to be attributed to
statistical uncertainties. Notice that whene8=1, Eq.s18d in-
volves the unfavorable ratiose−1d / se+2d, so that uncertain-
ties are greatly enhanced in this case. Better estimates for the
dielectric constant would be obtained by surrounding the
droplet with a medium of permittivitye8=e, or evene8=`
smetallic boundary conditionsd, similarly to the case of peri-
odically repeated systemsssee discussion in Ref. 12d.

We turn now to the radial dielectric permittivity profile
esrd of the spherical droplet, which is defined formally by
Eq. s22d. The profiles for the average electric field, polariza-
tion density, molecular density, and radial permittivity are
shown in Fig. 10. These results were obtained from a 35 ns
long MD simulation of the previous droplet, when an ion of
reduced chargeq* =qm /s2u=28.7 is present at the origin.
The total charge enclosed in a sphere a radiusr around the
central ion isqsrd=q−4pr2Psrd, since the induced charge
density is −= ·Psr d. The polarization, and hence also the
electric field profileEsrd=qsrd / r2, can be measured directly
in the simulation from the average radial polarization density
Psrd=kmsr d ·r̂ l. A better method, however, is to compute the
profiles from the measured chargeqsrd enclosed in a sphere
of radius r, as this yields smoother profiles thanks to the
integration over the sphere.

The electric field oscillates strongly close to the central
ion. Overscreening of the ion’s charge occurs in the first
molecular layers, similarly to the behavior observed near a
planar interfacesFig. 5d. At distances 3s, r ,R, the electric
field and polarization density decay as 1/r2, as required by
macroscopic electrostatics. The radial permittivity profile,
obtained from the ratioPsrd /Esrd, shows qualitatively the
same behavior than the orthogonal permittivity close to a
planar interface: it reduces to the bulk dielectric constant far
from the interfacesshereebulk.6.3d, while it is ill defined
close to the central ion and close to the surface of the droplet
since it diverges wheneverEsrd changes sign.

IV. CONCLUSION

We have combined linear response theory with extensive
molecular dynamics simulations of a simple model for dipo-
lar molecules, in an attempt to validate the concept of a local
dielectric permittivity of a confinedsinhomogeneousd polar
fluid. The geometries which were specifically investigated
correspond to a polar fluid confined between two parallel
walls sslit geometryd, and in a spherical cavity surrounded by
a dielectric continuum. Rather large samplessthousands of
polar moleculesd were considered, with confinement lengths
on the scale of a few nanometers, while statistics were gath-
ered over tens of nanoseconds. The key findings of our work
are the following.

sad There is excellent agreement between the results for
the permittivity tensoresr d obtained from the zero field fluc-
tuation formulas derived in Sec. II, and from the explicit
response of the system to an external field. Simulation results
based on the latter method converge generally faster if the
amplitude of the applied field is large enough. The efficiency
of both methods is comparable when we take into account
the computational cost of ensuring that the applied field re-
sults are not affected by nonlinearity.24

FIG. 9. Density profilefthick curve: ten timesrsrds3g and estimate of the
bulk dielectric constant of a droplet of a polar fluid from Eq.s18d with msr d
the total dipole moment of a concentric subsphere of radiusr sthin curved,
and from the Berendsen formulas33d sdashed lined. The expected bulk value
is indicated by the dotted line.

FIG. 10. Radial electric field, polarization density, molecular density, and
permittivity profiles for a spherical droplet of polar fluidsm* =2, T* =1.35,
rbulk

* =0.2d when an ion of unit electronic chargesreduced chargeq* =28.7d is
present at the origin. The dotted line indicates the bulk dielectric constant
e=6.3 sdivided by 10d.
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sbd The purely local assumption is found, perhaps not
surprisingly, to break down in the vicinity of an interface. In
the case of the slit geometry, the parallel componenteiszd of
the dielectric tensor is found to oscillate strongly, mirroring
the oscillatory density profile. Contrary to a wide-spread be-
lief, the coarse-grained envelope ofeiszd tends, if anything,
to increase rather than to decrease near the dielectric inter-
faces. This trend is observed both for dipolar soft spheres
and for the SPC model of water. The tendency is opposite of
that recently observed in water close to mica surfaces,25 but
in those experiments, the mica surface is highly charged,
leading to local electric fields on the order of 0.2 V/nm, a
strength at which nonlinear effects cannot be neglected. The
orthogonal componente'szd is subject to very large statisti-
cal fluctuations. It tends to take unphysicalsnegatived values
close to the interfaces, illustrating the necessity of consider-
ing a nonlocal relation between the local polarization and the
local electric field. However bothe'szd andeiszd go over to
the bulk values beyond a few molecular diameters from the
surfaces. Similar conclusions hold in spherical geometry.

scd The fluctuation formulas18d, which is closely related
to the classic Kirkwood–Fröhlich formula, is an exact result
that can be used to compute the bulk dielectric constant of a
homogeneous spherical drop of a polar fluid. It yields an
estimate ofe that is in better agreement with the results from
simulations performed under periodic boundary conditions,
than the traditional route based on the approximate Ber-
endsen formula. For highly polar fluids, metallic boundary
conditions should be used to minimize the propagation of
statistical errors when solving Eq.s18d for the dielectric con-
stant.

sdd If the local electric fieldEsr d varies on molecular
scales, a localesr d may always be formally defined from the
ratio of Psr d over Esr d, but the resultingesr d then generally
depends on the particular interface under consideration.

sed In the case of a uniform external fieldE8, the ratio
Esr d /E8 is a more informative quantity, which can be com-
puted from dipolar fluctuationsfsee Eq.s32dg. Our simula-
tions point to a dramatic and unexpected “overscreening” of
the applied field in the vicinity of the interfaces, which is
reminiscent of overscreening of surface charges by electric
double layers in highly correlated ionic systems.26

The main message is that the use of local permittivities
in “implicit solvent” models of biomolecular aggregates is
highly questionable on the nanometer scale. Future work will
consider the dielectric response of polar fluids near charged
srather than hydrophobicd surfaces, and will examine the in-
fluence of the molecular graniness and the polarizability of
the interface on dielectric properties of the adjacent polar
fluid.

APPENDIX: EWALD SUMS IN THE SLAB GEOMETRY

There exist several exact methods for computing electro-
static interactions in systems periodic in two dimensions
s2Dd, but most are only slowly convergent: 2D Ewald sums
and the Lekner method both have anOsN2d scaling, while
the MMM2D method scales asOsN5/3d.27,28A faster method
is to use an efficient implementation of the full 3D Ewald

summations, leaving empty space in the simulation box out-
side the slab, in an attempt to decouple the interactions be-
tween the original slab and its periodic images in thez
direction.29 Adopting this approach, Yeh and Berkowitz
showed that the interactions with the periodic imagessin all
three dimensionsd must not be summed with the usual spheri-
cal convention, but rather in a slabwise manner.30 The effect
of this change in summation order is simply to replace the
boundary term UspheresM d=2pM 2/ s1+2ẽdV by UslabsM d
=2pM z

2 in the Coulomb energy, whereẽ is the dielectric
constant at infinitysnot be be confused with theẽ introduced
in Sec. III Bd. This simple result can be seen as a particular
case of the general formula

UellipsoidsM d = o
a=x,y,z

Ba

ẽ + s1 − ẽdBa

2pMa
2

V
sA1d

for the boundary term when the Coulombic interactions are
summed with ellipsoidal summation order. In Eq.sA1d,
which is a generalization to arbitrary values of the dielectric
constantẽ at infinity of a result due to Smith,31 the dimen-
sionless coefficientsBa are related to the semiaxesax, ay, az

of the ellipsoid by

Ba =
axayaz

2
E

0

` 1

x + aa
2

1

fsx + ax
2dsx + ay

2dsx + az
2dg1/2dx.

sA2d

These numbers satisfyBx+By+Bz=1. By symmetry,Bx=By

=Bz=1/3 in thecase of a sphere;Bx=By=1/2, Bz=0 in the
case of a cylindersaz→`d; andBx=By=0, Bz=1 in the case
of a slabsax, ay→`d. ExpressionsA1d is simply the interac-
tion energy of the charges with the depolarizing field pro-
duced by the uniform polarization densityM /V of the infi-
nite ellipsoidal collection of cells, when the latter is
surrounded by a medium of dielectric constantẽ ssee Ref. 32
for the formula of the depolarizing field in a uniformly po-
larized ellipsoidd. In the particular case of a slabwise sum-
mation ordersBx=By=0, Bz=1d, expressionsA1d becomes
independent of the permittivityẽ at infinity, as had been sus-
pected by J de Joannis, Arnold, and Holm.33 In the latter
reference, explicit formulas to correct for the unwanted in-
terlayer interactions in the 3D Ewald sums have been ob-
tained, making the present approach exact in principle, while
preserving itsOsN ln Nd complexity.

Our simulation cell contained an interlayer gap of width
2L, so that it was a parallelipiped of sidesL3L33L. No
correction term for substracting interlayer interactions was
used, apart from the slabwise summation order. The Ewald
sums were computed using the smooth particle mesh Ewald
method sEwald coefficient a=3.4705 nm−1, grid size 13
313340 cells, interpolation order 6d.34 The interactions
were truncatd beyond 0.9 mm, both in the real space Ewald
sum and in the soft-sphere interactions. Assuming that the
forces computed using a gap of width 10L are the exact
answers, a gap a width 2L leads to a relative rms error in the
forces of the order of 10−6 for the system simulated in Sec.
III A spolar fluid with m* =2, rbulk

* =0.8, confined to a slit of
width 16.6sd.
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