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Dielectric permittivity profiles of confined polar fluids
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The dielectric response of a simple model of a polar fluid near neutral interfaces is examined by a
combination of linear response theory and extensive molecular dynamics simulations. Fluctuation
expressions for a local permittivity tensefr) are derived for planar and spherical geometries,
based on the assumption of a purely local relationship between polarization and electric field. While
the longitudinal component af exhibits strong oscillations on the molecular scale near interfaces,
the transverse component becomes ill defined and unphysical, indicating nonlocality in the dielectric
response. Both components go over to the correct bulk permittivity beyond a few molecular
diameters. Upon approaching interfaces from the bulk, the permittivity tends to increase, rather than
decrease as commonly assumed, and this behavior is confirmed for a simple model of water near a
hydrophobic surface. An unexpected finding of the present analysis is the formation of “electrostatic
double layers” signaled by a dramatic overscreening of an externally applied field inside the polar
fluid close to an interface. The local electric field is of opposite sign to the external field and of
significantly larger amplitude within the first layer of polar molecules2@5 American Institute

of Physics[DOI: 10.1063/1.1845431

I. INTRODUCTION In this paper we consider the case of polar fluids con-
fined by continuous dielectric media characterized by a per-
The dielectric permittivity of a medium is a macroscopic mittivity €. We relate the local dielectric permittivi(r) to
concept which is defined by the relationship between thehe dipolar fluctuations within the inhomogeneous fluid,
polarizationP and the electric fielcE inside the mediunt. along the lines of the classic Kirkwood—FréhligkF) linear
When the dielectric medium is inhomogeneous over distresponse treatment of the bulk permittiityMore specifi-
tances much larger than molecular scales, a space-dependeatly, we shall consider the cases of a simple polar fluid in an
(local) permittivity e(r) may be defined when dealing with infinite slab confined by two semi-infinite dielectric media
mesoscopic electrostatic problems. The question of how fasind of a polar fluid confined to a spherical cavity inside a
towards molecular scales a local permittivity remains auniform, macroscopic dielectric continuum. Numerical re-
meaningful concept, and how(r) is related to dipolar fluc- sults based on long Molecular Dynami@édD) simulations
tuations is a long-standing problémhich we have recently will illustrate the limitations of the concept of a local permit-
addressed in the case of a polar fluid near a sharp inte3rfacetivity in the two geometries.
We showed that a necessary condition for the existence of a All considerations in this paper will be restricted to
meaningful, statistical definition of a local permittivity is that sharp interfaces. Like most previous theoretical and numeri-
the local electric field inside the medium does not vary apcal work in the field, the present coarse-grained treatment
preciably on the scale of the molecular correlation length, asuffers from the inconsistency of ignoring the molecular
already noted by Nienhuis and Deufch. graininess of the confining media, while using a fully mo-
The ability to give a clear-cut statistical definition of a lecular description of the polar fluid.
local permittivity is crucial for any coarse-graining strategy,
whereby large parts of a complex multicomponent systeml. POLARIZATION IN LINEAR RESPONSE
are treated as continuous dielectric media, while the remain-
ing parts are described in molecular detail. An important ex
ample is provided by implicit solvent models of biomolecu-
lar assemblies, where water is considered as a continuo
dielectric medium, characterized by a local permittivity in
the immediate vicinity of biomolecules or membranes. A spa
tially varying permittivity then determines the electrostatic
interactions between charged residues and fd@snversely
one may wish to describe a polar solvent trapped within
dielectric matrix, as in the case of water confined between N
membranes or clay platelets, or within narrow pores. In these M) = 2 piSr = i), 1)
circumstances it may be advantageous to describe the con- =
fining matrix as a dielectric continuum, while the confined wherer; is the position of théth molecule inside the cavity.
polar liquid is modeled with molecular resolution. The corresponding total dipole moment is

Consider a classical fluid at temperatufe1/(kgf),
‘made up ofN polar molecules carrying dipole momenis,
confined to a cavity of arbitrary shape and volumecarved

Bt of a macroscopic dielectric medium of uniform permit-
tivity €. The molecules may be polarizable; their interac-
tions are arbitrary at short distances, but tend towards the
dipolar interaction at larger distances. The microscopic po-
allarization density is
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charges afr|—«) E’. In an isotropic phaseRy(r)=0 for
M = f m(r)dr = X ;. (20 points in the bulk of the fluid. Close to the confining bound-
Peaviy ' aries,Py(r) is nonzero in general, but may vanish for sym-
metry reasons, as in the case of linear polar molecules con-
Let Po(r)=(m(r)) be the average local polarization of the fined in a slab or a spherical cavitgee Sec. I)l. When a
fluid in the absence of an externally applied electric figlg  uniform external field is applied to the system, it induces a
definition,E’ is the field far away from the cavity, created by polarization density defined by

JIm(r) = (m(r))]exd- B(Ug(1,...,N) =M - E¢)]d1- - -dN
[exgd-B(U.(1,....N)—M -E.)]d1 - -dN ’

AP(r) =P(r) = Po(r) =(m(r))g, —(m(r)) = ©)

where we have used the short-hand notatitor the degrees AP,(N=B8 S [(m,(r)M.) = (m,(r)}M Y]ES )
of freedom of theith molecule. For linear nonpolarizable “ .y e [
molecules,=(r;, &;) reduces to the position and orientation

of the permanent dipole moment, and integration with phasq,herea”:x, y, or z and the statistical averages are under-
space elementied’r;dQ2,, is performed over all possible stood to be taken at zero exterrfahd hence cavityfield,
positions and orientations of the molecule inside the cavityj e., with a Bolzmann weight expBU..). As expected for
U, is the total interaction energy of tipolar molecules of  the linear response to a uniform external field, Ef. in-
the fluid within the cavity in the absence Bf; it depends volves the average correlation between a fluctuation in the
obviously on the permittivitye” of the surrounding dielectric. |ocal polarization densityn(r) and a fluctuation in the global
The instantaneous total dipole moméhtcouples to the cav- dipole momentM of the system, as has been recognized
ity field E., i.e., the electric field inside the cavity in the recently by Stern and Fell&MNote that(M) will be zero by
absence of polar fluid, when the exterfapplied field in  symmetry in all systems we shall consider.
the embedding dielectric B’. The two fields are related by Comparison between Eq&) and(7) does not provide a
the usual boundary conditions of macroscopic electrostaticgjyctuation formula fory(r) or &(r), since they involve the
Let AE(r)=E(r)-Eq(r) be the difference between the total and cavity fields, respectively. The relation between
mean local electric field inside the cavity, due to the externathese two fields depends on the geometry of the cavity, and
field and all the dipoles, and the mean electric field when ngan pe established within macroscopic electrostatics. We

external field is appliednote thatEq(r)=0 if Po(r)=0 ev-  consider successively the case of slab and spherical geom-
erywherd. Then, within the linear regim@.e., for not too  etries.

strongAE(r)], the induced polarization density is related to
AE(r) via

A. Slab geometry

1
AP(r):—f x(r,r’) - AE(r')dr’, (4) We consider a cavity in the form of an infinite slab
4ar Do . _ . .
cavity where a fluid ofp=N/V polar molecules per unit volume is
confined in thez direction by two infinite dielectric walls of
where x is the dielectric susceptibility tensor. In the slow permittivity ¢’. The distance between the dielectric walls is
modulation limit, i.e., for slowly varyingAE(r), the integral L. The confined fluid is inhomogeneous in thalirection
factorizes approximately, and E¢4) reduces to the local (orthogonal to the waljsonly. By symmetry, the permittivity

form tensor reduces to the diagonal form
1 €(2) 0 0
0= X0 850 ® w=lo @ o | ®)
0 0 €, (2
where, formally,x(r,r")=x(r)s(r —r’). The local permittiv-
ity tensor is defined by wheree, ande, denote the components parallel and orthogo-
nal to the walls. Equation&) and(6) then combine into two
xr)=er)-1. (6)  independent relations,

Linearization of Eq.(3) with respect ofE, leads to the fol- P/(2) = €(2) - 1E @ (9a)
lowing relation between the componentsAd®(r) andE(r): ! Ag 7
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€, (-1 The key finding is that a local expression of the permit-
AP, (2) = TAEL(Z)- (9b) tivity involves correlations of the local and total polarization
of the form (m,(2M,), and not of the local polarization
We dropped the symbd! in Eq. (9a) because isotropy in the alone, as has sometimes been wrongly assumed in the litera-
(x, y)-plane implies thaP(r) (the average polarization in tyre. This was already recognized by Stern and Felter
the absence of external figlthas no parallel components. their expression for the permittivity tensefz) differs from
Using the standard boundary conditions on the normal anghe one derived here, because they did not consider a single
tangential components of the electric field, one finds the folsjab, but a system which is periodically replicated in space to
lowing relations between the components of the uniform exform an infinite spherical array of the original slab.
ternal fieldE’ and the cavity fielde, We stress that formulad.3) and(17) were derived for a
[ c = i uniform external field under the local assumpti@j. If the
=B, El=€E}, (10 o . o
local assumption is not valid, definitio(®a) and (9b) be-
where Ef and E| are two-dimensional vectors in tH&,y)  come purely formal, and the permittiviz) may take val-
plane; the orthogonal components are alongzfirection.  ues that are unphysical and specific to the case of a uniform

Maxwell's equationV X E(z)=0 implies external field permeating a planar interface.
JE(2) ‘9E::(Z) o 11
Jgz o9z (11) B. Spherical geometry

so thatE = (E,, E) is independent of, i.e.,E\(2) =E| every- We now consider a system & polar molecules con-
where in space. In other words, E§a) leads to fined to a spherical cavity of radiug, surrounded by a di-
electric medium of permittivitye’. We first recall the fluc-
P(2) = 6“(2)_15“’: 6(2) - 1 c (12)  tuation formula for thebulk dielectric constant of this
4 4 system. The cavity field is noE =3¢'E’/(2€’' +1). For a

macroscopic spherical sample of uniform permittivétythe
local field, far from the boundaries, is uniform and equal to
=3€’E’/(2€' +€). SubstitutingE® and E into Eqg. (7) and

Comparison of Eqs(7) and (12), together with isotropy in
the (x,y) plane then leads to the desired fluctuation formul

for (2): . L - .
into the definition(5) of the polarization, one arrives, upon
€(2) =1 +2p[(m(2) - M) =(my(2)) - (M )]. (13)  identification and use of the isotropy of the system, at
The orthogonal component may be determined from Max{e—-1)(2¢' +1) 4me
well's equationV-D(2)=0, whereD=E+4xP is the dis- (2€ + €) —?Rm(r) “M) = (m(r)) - (M)]. (18)

placement vector, leading to ) o
In this formular can be any point in the bulk of the sample,

E[Ei(z) +47P,(2)]=0. (14) so thatm(r) may be replaced byl /V if boundary effects are
dz negligible. This leads back to the well known KF formula for
the bulk dielectric constant in terms of fluctuatiof12)

Int ti f Eq(14) f -0 { iel
ntegration of £q/(14) from = to 2 yield —-(M)?)/V of the total dipole moment of the systénSince

E.(9-E|\ =-4nP (2 +47P (2=~ =) boundary conditions in computer simulations are designed to
minimize finite size effects, the KF formula can be used, as
=—47P (2 + (¢ - 1E. (15  expected, to compute the dielectric constant in a simulation

performed with a reaction field or periodic boundary condi-
tions (if the Ewald sums are performed using the spherical
convention for the order of summatioh For a confined
spherical system which isot periodically repeated, the di-
electric constant should be computed from E@) (see Sec.
IB).

Attempts have been made to generalize the KF relation,
) . ) valid for a macroscopic spherical system, to mesoscopic
Comparison of Eq(16) with the transverséa= 1) version samples, wher®(r), E(r), and the resulting(r) are nonuni-
of Eq. (7) leads to the desired fluctuation formula ©r(z),  form near the confining surfac®™* Strictly speakinge(r)

e (2-1 is, however, no longer a scalar near the sample boundary, but

e @ Amp{m, (M ) = (M (KM })]. (17)  atensor with radial and tangential components.

+ We consider here the case where the external field is
Equations(13) and (17) are the appropriate fluctuation for- radial, preserving thus the spherical symmetry of the prob-
mulas to compute the permittivity tensefz) of a system lem. Such a radial field can arise from an external charge
inhomogeneous in one direction. Note that these formulaplaced at the center of the spherical cavity filled with polar
depend only implicitly, via the statistical averages weightedmolecules, or polar residues of a globular macromolecule
by the Bolzmann factor expBU.,), on the permittivitye’ of ~ (e.g., a proteijy in that case the nonuniform external field is
the confining medium. This is to be contrasted with the reE’(r)=(q/r?f wheref=r/r. The dipoles of the confined
sults for spherical samples to be discussed below. fluid or macromolecule couple to this field with energy,

Substracting from Eq(15) the same equation without exter-
nal field and using Eq(9b) gives e, (2)AE, (2=€'E =ES,
where the second equality follows from Ed.0). Equation
(9b) may hence be rewritten as

ieL(Z)—l

PO e @

ES. (16)
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’ ) tended dipolex made up of two opposite chargeg falaced
Uext=— E Mmi-E'(r)= —f m(r)E’(r)dr, (190 at +d/2 from the center, such that=qd; the elongation was
! Deavity chosen to bel/o0=1/3, where o is the molecular diameter.

wherem(r)=m(r)-f is the radial component of the micro- The bulk dielectric behavior of fluids with such extended
scopic polarization densitfl), andE’(r)=qg/r?. Substituting  dipoles has been shown to be very similar to that of fluids
(19) into the Boltzmann factor in the definitiof8) of the ~ With point dipoles, as long ag/o<1/2.** The short-range
polarization, and linearizingwhich is valid in the limit of ~ repulsion between the spherical molecules is chosen to be of
small g), one arrives at the following relation between thethe “soft sphere” form

radial component oP(r) and the radial component of the 12
external field: Ug(r) = 4u(—) (25)
P(r)=P(r) -f =(m(r))+ B dr’'[{m(r)m(r")) with ¢=0.366 nm andu=1.85 kJ/mole[the charges &
Deavity carry a massn=5 amu; a molecule has hence a total mass of
—(m(r))Xm(r HE'(r") (20) 2m and a reduced moment of inertia=1/2mo?=1/9. The

simulations were performed with the simulation package
where the statistical averages are once more taken at zegiromacs™ The equations of motion were integrated with a
external field. We consider the case of molecules carryingime stepdt=2 fs (reduced time stept =dt/(mo?/u)*/?
linear dipoles, so tham(r))=0 by symmetry. We now as- =0.0024]. The walls exert a force on the center of mass of
sume a local relationship betwetr) and the radial local the molecules that derives from the potential,

field E(r) in the general form defined by Eq&) and (6), amul o0 9
. . . . T T g (o
and mvolvuzg)a I](-)cal dielectric permittivity(r), Uyans(2 = E{; + m] (26)
e(r) -
P(r) = T an E(r). (21) This potential follows from integrating the soft-sphere repul-

sion potential25) over the regiong<0 andz>L, for a wall
This relationship, together witv-D(r)=4mqd(r), implies  of density p,.0°=1. The long range Coulomb interactions

that the fieldsE(r) andE’(r) are related by between the chargesgtand the infinite array of periodic
E'(r) images are computed by a slab-adapted version of the usual
E(r)=—-. (22) 3D Ewald summation, as explained in the Appendix.

(r) The structure of the fluid inside the slab is best charac-
Combination of Eqs(20), (21), and (22) then leads to the terized by the density-orientation profil€z, 6), where 6 is
following relation fore(r): the angle between a molecular dipole and thaxis. This

1en-1 may be expanded in Legendre polynomials according to
prrea U =Bf dr’(m(r)m(r ))E’(r") (23 -
7w €(r) Do _
caviy p(z,6) = X p(2)P(cos0), (27)

or, substitutingg’(r)=q/r?, =0

e(r) -1 r)\2 where p(2)=1/2(2¢ +1)[*1p(z, 0) Pg(COSﬁ).d(.COSB). In the_
= 477,8J dr’{m(r)m(r')H| = | . (24) case of uncharged walls, only even coefficients appear in the
e(r) Deavity r series(27) because of the symmetpfz, 6)=p(z, 7—6). The

Note that, contrary to Eq18), this relation does not depend ¢=0 coeffigientpo(z_):p(z)lz Is one half of the density pro-
explicitly on the permittivity e’ of the confining medium. 1€ p(2)=[gp(z, 6)sin 6d6. The ratio

The present space-dependent dielectric constant de- pe=2(2)

scribes the screening by the polar fluid of the external field a(2) = W (28
created by the point chargg as is obvious from Eq22). It

reduces to the bulk dielectric constant wheis sufficiently ~ provides a measure of the mean alignment of the dipoles.
large, but still small compared to the radiBof the spheri-  SinceP,(x)=(3x°~1)/2, a(2) is negative if the dipoles are

cal cavity. predominantly aligned parallel to the interfalo®(z)=-5/4
for complete alignment while a(z) is positive for predomi-
I1l. MOLECULAR DYNAMICS RESULTS nantly orthogonal alignmenita(z)=5/2 for full alignment

orthogonal to the interfade

We performed the simulations at a constant temperature

We have carried out a number of long MD simulations T=300 K (reduced temperaturd =kT/u=1.35, and for
(spanning tens of nanosecohds obtain estimates of(z)  two values of the dipole moment=1.47 and 2.45 D, cor-
and €, (2) from the fluctuation formulagl3) and (17). In a  responding to a reduced dipolé =\ u?/o’u=1.2 and 2, re-
slab of width L, 3500 dipolar soft sphere@©SS were spectively. The width of the slab was adjusted o
placed. The confining walls a=0 andz=L are assumed to =16.62, so that the reduced density of the fluid far from the
be nonpolarizablée’' =1). The simulation cell is a cube with walls is pp=ppue>=0.8. The bulk dielectric constant of
edges of lengtty, and periodic boundary conditions are im- this polar fluid is 98+2 atu'=22'* and about 10 ap"
posed in the(x,y) directions. Each molecule carries an ex-=1.2.

A. Slab geometry
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FIG. 1. Density and orientational profile of a DSS fluid in a siab 012 3 4 5 67 28/09 10 11 12 13 14 15 16

=1.35, pp,,=0.9 for two values of the reduced dipole moment.

FIG. 2. Parallel component of the permittivity tengsame system as in
) ) . . . Fig. 1), from fluctuation formula13) and from the response to an external
The resulting density and orientation profile&) and  field E'=0.1 V/nm alongx axis.

a(z) in zero applied field are plotted in Fig. 1. Layering
along the walls occurs in an interfacial region of five to SIX vall with € =1. This is contrary to the prediction of a gen-

m_olec_ular _d|ameters. The first Ia_yer of molecules_ IS seen Rralization of the familiar Onsager cavity model to the case
align its dipoles parallel to the interface, but orlentatlonalof a dipolar fluid near a dielectric wal

ordering is rapi'dly lost further away from the dielectric Turning to the perpendicular permittivity, (z), we con-
walls. The ordering of molecular dipoles parallel to the wall ;e first the MD results obtained in the absence of external
in the first layer may be understood qualitatively in terms Offield. The structure of the fluctuation formula?) is very
electrostatic interactions of these dipoles with their images. unfavorable for the estimation of large values of the permit-
Strictly speaking, there are no images on the molecular scalg ity since the ratio of the left-hand side is then close to 1,
since the walls are not polarizable, but image charge interacsg that statistical uncertainties on the fluctuation expression
tions arise on the mesoscopic scale because of the dielectrig, the right-hand side, which we shall henceforth denote by
discontinuity between the polar fluite>1) and the walls  {(z), will be dramatically amplified on the quantity of interest
(¢'=1). The behavior of the density-orientation profile far €,(2)=1/[1-f(2)]. This shortcoming is illustrated in Fig. 3
from a single dielectric wall has been studied by Badiali,for the caseuw =1.2 (we did not succeed in extracting (2)
who showed thap(2) is given asymptotically by its bulk from dipolar fluctuations in the cage =2). The signalf(z)
value plus amA/Z tail arising from the dielectric discontinu- calculated by dividing the slab width into 300 “bins” is
ity betweene and €10 seen to be rather noisy, despite the length of the simulation
Parallel and perpendicular permittivity profilegz) and (28 ng. The fluctuations are strongly enhanced near the
€,(2) were estimated from the simulations in zero external
field using the fluctuation formulag3) and(17), as wellas 5 e
from simulations in the presence of an external field, by L '_3(') AL
evaluation of the ratid®(z)/E(z) of the induced local polar- i & -
ization and electric fieldcf. Egs.(9)]. 4t |
Results for the parallel permittivity(z) obtained by
both routes are shown in Fig. (¢he simulation withE’=0
lasted 28 ns, while that witk’=0.1 V/nm along the< axis
was 3.5 ns long The agreement between the two indepen- | Nonlocal I
dent estimates is seen to be perfect. The pronounced oscille2 [ ||
tions of ¢/(z) near the walls closely mirror the oscillations in .l ! L L 5
the density profile apparent in Fig. 1. In fact the ratio ‘ :
€(2) ppui! p(2), also shown in Fig. 2, shows much less struc- 1
ture. Towards the middle of the slaé(z) is seen to be con- |
stant and to take a value=10 (for x"=1.2) ande=96 (for A ™ o e
©"=2), in agreement with the bulk value derived from MD 0g~—+—1-—1-L R R R RO R TR
simulations of a periodic nonconfined fluid at the same state z/c
point. Note that on average‘,'(z.) tends to .mcrease above its FIG. 3. Dipolar fluctuationg(2) (thin line) and smoothed curvi(z) (thick
bulk value close to the confining walls; in other words, par-jine) [see text Inset: orthogonal component of the permittivity tengat
allel dipolar fluctuations tend to be enhanced near a dielectrie1.2, 7°=1.35,p;,,=0.9.

25

— 20 4

3k £,@
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FIG. 4. Continuous line: polarization charge density) [e/nn¥] induced -

inside a slab of polar fluidu=1.2, py,,,=0.8, T'=1.35 by an external s

electric fieldE’=1 V/nm along thez direction. Dashed line: ten times the . REEREREREREANRRERNRE MY

; Z ’ ’ bl 1 1 1 1 1 1 1 1 1 1 1 1 1 1 'l

integral [oc(z')dz'. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

z/o

walls, but these values lead to nonphysical, negative valugsg, 5. Electric fieldE(z) (thick line) and polarization densitP(z) com-

of €,(2), pointing to the inadequacy of the local assumptionputed using Eq(30) (thin line) and from the statistical average(z)) (dot-

(9). A smoothed curvd(z) is obtained by averaging the sig- ted line, for the same system as in Fig. 4. Inset(2) from Eq. (31) and

nal f(2)/p(2) over intervals of width &, and multiplying the oM fluctuation formula17) (dashed ling

result by the local density(z). The resulting estimate of

€, (2) in the central region of the slab is shown in the inset of(=-2 V/nm), i.e., the external fiel&’ is overscreenethy a

Fig. 3. factor of 2! We refer to this remarkable effect as the forma-
The statistical uncertainties are still large, but the avertion of an “electrostatic double layefEDL). Beyond the

age value is compatible with a bulk permittivity, =¢; first layer, the oscillations ifE(z) are gradually damped, but

=10. Outside this central “bulk” intervale, (z) becomes are still visible in the central part of the slab, where the

unphysical whenevef(z) exceeds 1. oscillations are around a mean value of about 0.1 V/nm. The
We have investigated the transverse dielectric respongeolarization P(z) oscillates out of phase witk(z) as ex-

by applying an external fiel#’=1 V/nm along thez axis of  pected, and the two estimates, based on B€) and on

the moderately polar fluiu’=1.2, simulation time: 12 ns  (m(2))g/, are in excellent agreement. So are the estimates of

This large value was chosen such that the Igsateenel ¢, (z) based on Eq$17) and(31), despite the large statistical

field near the center of the slaB(z)=E'/€, (2), is still suf-  uncertainties. As pointed out above, the relation between

ficiently strong to induce a sizeable polarization. The localP (z) andE | (2) is nonlocal[i.e., of the more general form

charge density(z) induced by the applied field is plotted in (4)] near the walls, where(z)=1+4wP(z)/E(z) can take

Fig. 4. As expected it is antisymmetric with respect to mid-negative values, and diverges whenegiz)=0. Hence

plane(z=L/2), and integration ot(z) over the left-hand and ¢, (2) is not a useful quantity near the walls. A more relevant

right-hand halves of the slab leads to induced surface chargguantity is the normalized EDL profil&(z)/E’. For weak

densitiescs= +0.05e/nn¥. The local electric fieldE(z) is  fields, it is given by linear response theory, viz.,

calculated from

z E. (2

o2z SEF = 1= 4mp(m, (M) — (m, (DXM )]

E(z=E'+ 477f (29 E’ -

0
(32

=1-1(2).
and the polarization density may then be deduced from @
2 Figure 6 illustrates the good agreement between the EDL
- f c(z')dz (30) profiles computed from the fluctuation§(z) (properly
0 smoothed as in Fig.)3and directly from the rati& , (z)/E’.

The small discrepancies close to the walls are probably due
to the fact that the extended dipoles are treated as point di-
! poles in the evaluation of(z). In order to investigate the

@- (31) influence of the dipole extensiaV o on the striking over-
screening effect observed in the EDL profile near the walls,
we have also carried out simulations for an extengdo
=0.1 (compared to 0.3 in the previous simulatipnseeping
the dipole moment fixed at"=1.2. An oscillatory profile of
E(z) similar to that in Fig. 5 is once more observed, but the
amplitude of the oscillation closest to the two walls increases
by =50% (from —2 to about—3 V/nm), thus pointing to an

P(Z) = —E, ;E(Z) =

while the permittivity profile follows from
€.(2)=

Results obtained in this way fd€(z), P(z), and €, (2) are
plotted in Fig. 5. The polarization profilB(z) can also be
determined from the statistical avera@e(z)) of the micro-
scopic polarization density aloridotted line in Fig. 5. The
local electric fieldE(z) exhibits large oscillations close to the
walls. Inside the first layer,E(z) is strongly negative
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FIG. 8. Geometry for the Berendsen formula: a droplet of raélus sur-
i rounded by a continuous medium of dielectric constnDipolar fluctua-
i tions in the fluid are measured inside a concentric subsphere of redius
IR U U NNU HNUN NNPU B U AN | while the remaining fluid in the outer shell is assumed to behave as a
7 g/ 9 10 11 12 13 14 15 16 dielectric continuum of permittivit.

c

[
3 4 5 6
FIG. 6. EDL ratioE, (2)/E’ from Eq. (29) (continuous ling and from the ~ rounding medium of dielectric constant unity, the local dipo-
fluctuation formula(32) (dashed ling[same system as in Fig).3 lar fluctuations in the vicinity of the interface remain almost
bulklike, except in the very first layer. This behavior is in
enhancement of the overscreening effect as the point dipop@arked contrast to that observed for linear extended dipoles,
limit is approached. illustrating the dominant influence of hydrogen bonding in
We also carried out one longB0 ng MD run of 2076  the case of water.
SPC water molecule¥, confined between the same hydro-
phobic walls(26). Figure 7 shows the resulting profiles for g_spherical geometry
the Oxygen density, molecular orientation, and parallel per- ) ) )
mittivity (the orthogonal permittivity could not be obtained ~ The bulk dielectric constant of a spherical droplet of a
from the fluctuations The density profiles are not unlike Polar fluid (possibly surrounded by a continuous medium of
those observed in the simulations of Lee, McCammon, an®€rmittivity €') is given in terms of dipolar fluctuations by
Rossky'® who used a different water model, different wall- EQ- (18). Previous workers have used another approach,
water interaction, and a narrower slit. The symmetryWh'Ch is approximate: they get th_e dielectric consFant of a
p(z,0)=p(z,m-6) no longer holds, and there is indeed adroplet from the mean square d|po<lm§(r)> of an inner
nonzero average polarizati®(z) = p(2) u({cos ) close to the spherical_ regio_n of radius, f';\ssuming that the remaining
walls, even with no applied external field. The permittivity Surrounding fluida shell of thicknes®—r) can be treated as
profile €, (2) shows that the bulk permittivity of SPC water @ dielectric continuum of permittivitie (see F?!g. 8 The
(e=65),%is approximately reached after just one molecular@t€r approach yields the Berendsen fornftiia;
layer inside the fluid. It is a striking result that, despite the (2€' +6)(Ze+ 1) - 2(rIR3(e' =&)(1 %)
large dielectric discontinuity between the fluid and the sur(€~1 (2€ +9)(Ze+€) - 20/R(e —B)(e-7)

— Ty < 4T -
- . 3V,
1 0 T 0@/ p ] whenV,=4ar3/3. Equation(33) reduces to the KF formula
s bulk | ife=¢€ orif r=R When=¢, it interpolates between the KF
L | formula for a sphere surrounded by a medium of permittivity
€ (for r <R), and the KF formula for a sphere surrounded by
0.61= & (z)/ 100 7] a mediume’ (for r=R).
i " i We compared the predictions of E(.8) with those of
04= 7 Eq. (33) [with é=€], for a dipolar soft sphere fluid with pa-
i t ] rametersu®=2, T'=1.35, andp,;=0.2. The fluid was con-
02~ < cosO > i 7 fined to a spherical region by external forces deriving from
- | L 1  the potential,
0 . I/ N e w:—‘-\:\ ,: —
[/ V] s L B R4
021t} Lo AU M s60r [ (R-1° ~ (R¥1)°] T 9RY)"
04 [ iia(z) \ :' l (34
- — | \ -
L :// '\.\ i which arise from integrating the soft-phere repulsion poten-
v | i | i | i ., tial (25) over the regiorr >R, assuming a confining medium
0 1 2 3 4 of densityp,,0°=1. The results of a 30 ns long MD simu-
z [nm] lation of a droplet oN=1000 molecules confined in a sphere

1 —_ y —
FIG. 7. Density, orientation, and permittivity profiles of 2076 SPC water pf ra}dlusR—lle-.surrounded by vacuunfn? _1) are S.hown
molecules confined in a slab of width 4.65 nm by hydrophobic walls N Fig. 9. Interactions were computed without the introduc-

(ppui=33.6 N3, T=300 K). tion of any cutoff. The estimate foe based on Eq(18)
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FIG. 10. Radial electric field, polarization density, molecular density, and

FIG. 9. Density profilgthick curve: ten times(r)o®] and estimate of the permittivity profiles for a spherical droplet of polar fluig" =2, T"=1.35,

bulk dielectric constant of a droplet of a polar fluid from E&8) with m(r) p;ulkzo'z) when an ion of unit electronic chargeeduced chargq” =28.7) is

the total dipole moment of a concentric subsphere of raiibin curve,  resent at the origin. The dotted line indicates the bulk dielectric constant
and from the Berendsen formuld3) (dashed ling The expected bulk value g 3 (divided by 10.

is indicated by the dotted line.

The electric field oscillates strongly close to the central
agrees very well with the bulk dielectric constast jon. Overscreening of the ion's charge occurs in the first
=6.310.2 obtained from a simulation performed under perimolecular layers, similarly to the behavior observed near a
odic boundary conditions using Ewald sums. The Berendseplanar interfacéFig. 5). At distances 3 <r <R, the electric
approximation is seen to underestimate the dielectric confield and polarization density decay asri/as required by
stant by about 8%. It yields the most accurate estimate whemacroscopic electrostatics. The radial permittivity profile,
r is large enough to encompass the structural angular correptained from the ratid®(r)/E(r), shows qualitatively the
lations, but small compared ®so that the outer shell of the same behavior than the orthogonal permittivity close to a
fluid can screen effectively the dipolar fluctuations. This is inplanar interface: it reduces to the bulk dielectric constant far
contrast with Eq(18), which provides in principle an esti- from the interfaceghere e,,=6.3), while it is ill defined
mate fore that is independent of the chosen radiusf the  close to the central ion and close to the surface of the droplet
inner subsphere, as long as it is small enough for boundaryince it diverges whenevéi(r) changes sign.
effects to be negligible. The variations of the estimate ob-
served in Fig. 9, especially at smalare to be attributed to
statistical uncertainties. Notice that whei=1, Eq.(18) in- IV. CONCLUSION
volves the unfavorable ratige—1)/(e+2), so that uncertain-
ties are greatly enhanced in this case. Better estimates for the We have combined linear response theory with extensive
dielectric constant would be obtained by surrounding themolecular dynamics simulations of a simple model for dipo-
droplet with a medium of permittivity’ =€, or evene’ =« lar molecules, in an attempt to validate the concept of a local
(metallic boundary conditionssimilarly to the case of peri- dielectric permittivity of a confinedinhomogeneouyspolar
odically repeated systengsee discussion in Ref. 12 fluid. The geometries which were specifically investigated

We turn now to the radial dielectric permittivity profile correspond to a polar fluid confined between two parallel
e(r) of the spherical droplet, which is defined formally by walls (slit geometry, and in a spherical cavity surrounded by
Eq. (22). The profiles for the average electric field, polariza-a dielectric continuum. Rather large samplésousands of
tion density, molecular density, and radial permittivity are polar moleculeswere considered, with confinement lengths
shown in Fig. 10. These results were obtained from a 35 nen the scale of a few nanometers, while statistics were gath-
long MD simulation of the previous droplet, when an ion of ered over tens of nanoseconds. The key findings of our work
reduced chargel =qu/c?u=28.7 is present at the origin. are the following.

The total charge enclosed in a sphere a radiasound the (a) There is excellent agreement between the results for
central ion isq(r)=q-4mr?P(r), since the induced charge the permittivity tensok(r) obtained from the zero field fluc-
density is -V -P(r). The polarization, and hence also the tuation formulas derived in Sec. Il, and from the explicit
electric field profileE(r)=q(r)/r?, can be measured directly response of the system to an external field. Simulation results
in the simulation from the average radial polarization densitypased on the latter method converge generally faster if the
P(r)=(m(r)-f). A better method, however, is to compute the amplitude of the applied field is large enough. The efficiency
profiles from the measured chargé) enclosed in a sphere of both methods is comparable when we take into account
of radiusr, as this yields smoother profiles thanks to thethe computational cost of ensuring that the applied field re-
integration over the sphere. sults are not affected by nonlinearffy.
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(b) The purely local assumption is found, perhaps notsummations, leaving empty space in the simulation box out-
surprisingly, to break down in the vicinity of an interface. In side the slab, in an attempt to decouple the interactions be-
the case of the slit geometry, the parallel comporgi@ of  tween the original slab and its periodic images in the
the dielectric tensor is found to oscillate strongly, mirroring direction? Adopting this approach, Yeh and Berkowitz
the oscillatory density profile. Contrary to a wide-spread beshowed that the interactions with the periodic imagesall
lief, the coarse-grained envelope gfz) tends, if anything, three dimensionsmust not be summed with the usual spheri-
to increase rather than to decrease near the dielectric intecal convention, but rather in a slabwise maniiefhe effect
faces. This trend is observed both for dipolar soft spheresf this change in summation order is simply to replace the
and for the SPC model of water. The tendency is opposite dfoundary term UgppedM)=27M 2[(1+2é)V by UgdM)
that recently observed in water close to mica surfatésit =27MZ2 in the Coulomb energy, where is the dielectric
in those experiments, the mica surface is highly charged;onstant at infinitynot be be confused with theintroduced
leading to local electric fields on the order of 0.2 V/nm, ain Sec. lll B). This simple result can be seen as a particular
strength at which nonlinear effects cannot be neglected. Thease of the general formula
orthogonal componeny, (z) is subject to very large statisti-
cal fluctuations. It tends to take unphysi¢akgative values _ B, 277'\/'2

: : ; f : Uellipsoid(M) - E ~ ~ (Al)
close to the interfaces, illustrating the necessity of consider- axyz €T (1-€B, V
ing a nonlocal relation between the local polarization and the
local electric field. However botl, (z) and¢(z) go over to  for the boundary term when the Coulombic interactions are
the bulk values beyond a few molecular diameters from thesummed with ellipsoidal summation order. In EEL),
surfaces. Similar conclusions hold in spherical geometry. which is a generalization to arbitrary values of the dielectric

(c) The fluctuation formuld18), which is closely related constanfe at infinity of a result due to Smitft, the dimen-
to the classic Kirkwood—Frohlich formula, is an exact resultsionless coefficient8,, are related to the semiaxag a,, a,
that can be used to compute the bulk dielectric constant of af the ellipsoid by
homogeneous spherical drop of a polar fluid. It yields an .
estimate ofe that is in better agreement with the results from 5 _ &&,3 f 1 1 dx
simulations performed under periodic boundary conditions, 2 Jo x+al[(x+ad)(x+a))(x+a) "
than the traditional route based on the approximate Ber- (A2)
endsen formula. For highly polar fluids, metallic boundary
conitons shoud b used o iz e pORRGaLON ftvcse numbers sas 8,51 By symmerys, =B,

=B,=1/3 in thecase of a spherd3,=B,=1/2,B,=0 in the
stant. o _ case of a cylindeta,—«); andB,=B,=0, B,=1 in the case

(d) If the local electric fieldE(r) varies on molecular ¢ 5 slab(a,, a,— ). Expressior(A1) is simply the interac-
scales, a locad(r) may always be formally defined from the (jon energy of the charges with the depolarizing field pro-
ratio of P(r) overE(r), but the resulting(r) then generally  qyced by the uniform polarization densiy/V of the infi-
depends on the particular i.nterface under 'consideratio_n. nite ellipsoidal collection of cells, when the latter is

(€) In the case of a uniform external fiel’, the ratio  gyrrounded by a medium of dielectric consfartsee Ref. 32
E(r)/E" is a more informative quantity, which can be com- fo; the formula of the depolarizing field in a uniformly po-
puted from dipolar fluctuationfsee Eq.(32)]. Our simula-  |arized ellipsoid. In the particular case of a slabwise sum-
tions poi_nt to_a dr_amatic gr!d_unexpectgd “overscreen_ing’f Ofnation order(B,=B,=0, B,=1), expression(Al) becomes
the _apphed field in the V|(_:|n|ty of the interfaces, which IS jndependent of the permittivify at infinity, as had been sus-
reminiscent of overscreening of surface charges by e|eCtr'Eected by J de Joannis, Armold, and Hdfnin the latter
double layers in highly correlated ionic systeffis. reference, explicit formulas to correct for the unwanted in-

The main message is that the use of local permittivitie§erjayer interactions in the 3D Ewald sums have been ob-

in “implicit solvent” models of biomolecular aggregates is tained, making the present approach exact in principle, while
highly questionable on the nanometer scale. Future work Wilhreserving itsO(N In N) complexity.

consider the dielectric response of polar fluids near charged  oyr simulation cell contained an interlayer gap of width
(rather than hydrophobicurfaces, and will examine the in- 2| gq that it was a parallelipiped of sidés< L x 3L. No
fluence of the molecular graniness and the polarizability 0trrection term for substracting interlayer interactions was
the interface on dielectric properties of the adjacent polaﬁsed’ apart from the slabwise summation order. The Ewald

fluid. sums were computed using the smooth particle mesh Ewald
method (Ewald coefficient «=3.4705 nm?, grid size 13
APPENDIX: EWALD SUMS IN THE SLAB GEOMETRY X 13X 40 cells, interpolation order)§4 The interactions

were truncatd beyond 0.9 mm, both in the real space Ewald
There exist several exact methods for computing electrosum and in the soft-sphere interactions. Assuming that the
static interactions in systems periodic in two dimensionsforces computed using a gap of width1@re the exact
(2D), but most are only slowly convergent: 2D Ewald sumsanswers, a gap a widtH_deads to a relative rms error in the
and the Lekner method both have @tN?) scaling, while  forces of the order of I8 for the system simulated in Sec.
the MMM2D method scales a8(N°3).2"?8A faster method  IIl A (polar fluid with " =2, p;,,=0.8, confined to a slit of
is to use an efficient implementation of the full 3D Ewald width 16.67).
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